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SUMMARY

It is well known that any spatial discretization of the saddle-point Stokes problem should satisfy the
Ladyzhenskaya–Brezzi–Babuska (LBB) stability condition in order to prevent the appearance of
spurious pressure modes. Particularly, if an equal-order approximation is applied, the Schur complement
(or, as called some times, the Uzawa matrix) of the pressure system has a non-trivial null space that gives
rise to such modes. An idea in the past was that all the schemes that solve a Poisson equation for the
pressure rather than the Uzawa pressure equation (splitting/projection methods) should overcome this
difficulty; this idea was wrong. There is numerical evidence that at least the so-called incremental
projection scheme still suffers from spurious pressure oscillations if an equal-order approximation is
applied. The present paper tries to distinguish which projection requires LBB-compliant approximation
and which does not. Moreover, a stabilized version of the incremental projection scheme is derived.
Proper bounds for the stabilization parameter are also given. The numerical results show that the
stabilized scheme does indeed achieve second-order accuracy and does not produce spurious (node to
node) pressure oscillations. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The projection methods were introduced three decades ago with the pioneering studies of
Chorin [1,2] and Temam [3]. Presently, they are one of the most popular methods for
discretization of the unsteady incompressible Navier–Stokes equations. There are many
peculiarities related to the performance of these methods, which were the subject of extensive
research (for a recent review the reader is referred to Gresho and Sani [4]). Many of the
properties of several such methods have been elucidated in a very interesting series of two
papers of E and Liu [5,6]. They performed a normal modes analysis of the semi-discrete (in
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time only) Stokes equations employing the first-order Chorin’s method and a second-order
incremental (Bell et al. [7]) and non-incremental (Kim and Moin [8]) methods. It revealed
that, since it is impossible to satisfy the exact boundary conditions for the pressure that
follow from the semi-discrete equations, the pressure is polluted by either the formation of
a spurious boundary layer around boundaries where Dirichlet boundary conditions are
prescribed (Kim and Moin’s method) or high-frequency oscillations, with a frequency of
order 1/�t (in case of the incremental method of Bell et al. [7]). They also proved some
convergence results assuming a Ladyzhenskaya–Brezzi–Babuska (LBB)-compliant marker
and cell (MAC) finite difference mesh.

In another series of papers, Guermond and Quartapelle [9–11] studied the properties of a
slightly different incremental scheme employing a backward-difference scheme for temporal
discretization and P2−P1 triangular (and LBB-compliant) finite elements for spatial dis-
cretization. The same scheme combined with spectral element spatial discretization has also
been used by Timmermans et al. [12]. Guermond and Quartapelle have provided conver-
gence proofs for first- and second-order accurate schemes under the assumption that the
finite elements satisfy the LBB stability condition. Their numerical results for a driven
cavity flow undoubtedly showed that if an equal-order (P1−P1) approximation is used, the
pressure suffers from spurious oscillations, which do not disappear even after a much finer
mesh is employed. The studies of Guermond and Quartapelle are the main source of
inspiration for the present work. The author has used, with success, a very similar incre-
mental projection scheme with P2−P1 tetrahedra in three dimensions (see Minev and
Ethier [13]) and recently obtained some controversial results while trying an equal-order
(P2−P2) approximation. On one hand, during the projection step (the evaluation of the
pressure), the projection schemes solve a Laplace equation for the pressure. Thus, the null
space of the discrete system for the pressure should be trivial (this is at least the naive
thought about it). On the other hand, the pressure computed with some second-order
projection schemes does suffer, in some particular situations, from spurious oscillations. The
present study attempts to address this issue.

Another distinctive feature of the schemes aiming at the numerical solution of the
Navier–Stokes equations is the way they treat the convective terms. Many of the schemes
use some kind of explicit approximation (see Chorin [1], Temam [2], Timmermans et al.
[12], Gresho et al. [14,15], Karniadakis et al. [16]) making the overall algorithm semi-
implicit or explicit. Others use a semi-implicit approximation for the convective terms,
making the algorithm unconditionally stable (see Bell et al. [7], Kim and Moin [8], Guer-
mond and Quartapelle [11], van Kan [17]). The advantage of the former approach is that
all the linear systems that need to be solved are symmetric and definite, and for such
systems effective iterative solution methods exist. The advantage of the latter approach is its
implicitness. The result from the momentum balance linear system, however, is non-sym-
metric and therefore the possibilities for an iterative solution are restricted. Moreover, this
approach requires an update of the convective part of the matrix on each time step, which,
at least for the three-dimensional case, is an expensive procedure. Since our solver is
primarily aimed at three-dimensional problems we used the first approach throughout the
present study. The convective terms are discretized explicitly using the method of character-
istics (see Minev and Ethier [18]).
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The remainder of the paper is organized as follows. The next section discusses the cause of
instability of some of the projection/splitting1 schemes and a possible way for a global
stabilization. In Section 3 we discuss the bounds for the stabilization parameter of the scheme.
Section 4 presents numerical results for a problem with an analytical solution and well-known
benchmark flows. The main results of the present study are summarized in the last section.

2. SPLITTING/PROJECTION SCHEMES AND STABILIZATION

The Navier–Stokes equations (NSE) in primitive variables read

�u
�t

+ (u·�)u= −�p+
1

Re
�2u (1)

� ·u=0 (2)

For the sake of simplicity, in the present section we consider only Dirichlet boundary
conditions of the type u���=d, � being the problem domain.

It is a very well-known fact that any attempt to solve these equations numerically meets two
difficult problems. The first (and probably the easier) one is related to the discretization of the
non-linear convection terms. The second one is related to the numerical treatment of the
so-called saddle-point problem, which arises from the variational formulation obtained from
Equations (1) and (2). After discretization, the linear system has the form

�A LT

L 0
n�uh

ph

n
=
� fh

gh

n
(3)

where A is a linear combination of the mass, stiffness and eventually convection matrices and
L is the discrete divergence. It is well known that the matrix of this system is indefinite and
therefore its numerical solution is not straightforward.

2.1. Splitting schemes

One of the most effective and widely used approaches to circumvent the difficulties related to
the two problems stated above is the ‘divide and conquer’ approach, which has different names
under the different modifications: operator splitting, fractional step method, etc. The basic idea
is to split the numerical treatment of the different operators (and unknowns) in the equations,

1 The terms ‘splitting scheme’ and ‘projection scheme’ partially overlap. It is generally accepted to use ‘projection
scheme’ if the scheme is based on a Helmholtz decomposition of the velocity, which usually requires that the pressure
equation is solved after the convection–diffusion step. Those schemes can also be regarded as ‘splitting’ since the
convection–diffusion part is split from the imposition of the incompressibility constraint. In the opposite case,
‘splitting scheme’ is a more appropriate term although an approximate projection step (solution of a separate pressure
equation to enforce approximate incompressibility) is still performed.
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thus solving the initially difficult problem in relatively easier sub-steps. There are numerous
ways for such splitting and therefore a variety of different methods for solution of the unsteady
NSE exist. As we shall see later, those methods are related in one way or another to probably
the most classical approach for numerical solution of NSE— the so-called Uzawa method. It
can be generalized as follows. Using an implicit or semi-implicit scheme, one discretizes the
momentum equations (different spatial discretizations can be used). The incompressibility
constraint must always be treated implicitly and as a result one obtains a system of type
Equation (3). The algorithm then proceeds by solving a system for the pressure based on the
so-called Schur complement matrix

LA−1LTph= −LA−1fh+gh (4)

and then substituting the so-computed pressure back into the momentum equations to solve
for the velocity uh. Usually this approach is combined with an iterative solver for the resulting
linear systems and therefore ends up with two nested iterative loops, which makes it quite
expensive computationally although being very accurate. The most popular way to eliminate
the nested iterative loops is to split the convection–diffusion part of the NSE from the
incompressibility constraint which is usually imposed via a Poisson equation for the pressure
(or pressure increment over the current time step). The convection–diffusion part can be
further split into convection and diffusion sub-problems (Timmermans et al. [12], Karniadakis
et al. [16], Minev and Ethier [18]) or the convection and diffusion can be treated together
(Guermond and Quartapelle [9–11], Gresho et al. [14]). Of interest to the present study are the
following two formulations (here we suppose that the velocities and pressures at levels tn− i,
i=0, . . . , k are known and the task is to determine un+1 and pn+1).

Splitting 1 (incremental projection)

(i) Convection sub-step

� ũn− i(s)
�s

= − (ũn− i(s) ·�)ũn− i(s), 0�s� (i+1)�t, i=0, . . . , k

ũn− i(0)=un− i (5)

where k=0 for a first-order scheme and k=1 for a second-order scheme. This splitting of the
convection from the rest of the equations can be derived using the general approach
introduced by Maday et al. [19]. The velocities are marked by a tilde because they satisfy only
the convective part of the equations. This pure convection equation can be solved by a variety
of explicit methods, such as the Runge–Kutta (see Timmermans et al. [12]) or the method of
characteristics, which is employed in the present study (see also Minev and Ethier [18]).

(ii) Diffusion sub-step

�0u�
n+1+�1ũn+�2ũn−1= −�pn+

1
Re

�2u�
n+1
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u�
n+1=dn+1

Here

�0=
3

2�t
, �1= −

2
�t

, �2=
1

2�t

for a second-order scheme and

�0=
1
�t

, �1= −
2
�t

, �2=0

for a first-order scheme.

(iii) Incompressibility sub-step

�0(un+1−u�
n+1)+�(pn+1−pn)=0, � ·un+1=0

n ·u�
� �

n+1=n ·dn+1 (6)

This sub-step is usually resolved by taking the divergence of the pressure equation and
imposing the incompressibility constraint, which results in the pressure Poisson equation (PPE)

�0� ·u�
n+1=�2(pn+1−pn) (7)

usually supplied with homogeneous Neumann boundary conditions.
If the convection is discretized semi-implicitly, (i) and (ii) can be unified, as done by

Guermond and Quartapelle [9–11], into a convection–diffusion sub-step

�0u�
n+1+�1un+�2un−1+ [(�1u�

n +�2u�
n−1) ·�]u�

n+1= −�pn+
1

Re
�2u�

n+1

u�
n+1=dn+1 (8)

with �1=1, �2=0 for a first-order scheme and �1=2, �2= −1 for a second-order scheme.
Furthermore, the velocity un− i, i=0, 1 can be substituted from (iii) and the final momentum
equation takes the form

�0u�
n+1+�1u�

n +�2u�
n−1+ [(�1u�

n +�2u�
n−1) ·�]u�

n+1=

−�(�1p
n+�2p

n−1+�3p
n−2)+

1
Re

�2u�
n+1 (9)

where �1=2, �2= −1, �3=0 in case of a first-order scheme and �1=7/3, �2= −5/3, �3=1/3
in case of a second-order scheme. Then, u�

n+1 is admitted as an approximation to un+1 and the
velocity is not corrected on incompressibility sub-step (iii). This momentum equation is used
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by Guermond and Quartapelle [9–11] to formulate first- and second-order incremental
schemes. These schemes are equivalent to the ones defined by (i)– (iii) if applied to the
unsteady Stokes equations. Otherwise they require the solution of a non-symmetric system on
the convection–diffusion step. In the case of a finite element spatial discretization, Splitting 1
requires solving two symmetric systems in order to compute the velocity un+1 rather then one
non-symmetric, as required by the scheme of Guermond and Quartapelle. The latter scheme is
also unconditionally stable compared with the conditionally stable method of characteristics.
The numerical experiments, however, show that its stability restriction is relatively weak and
(for a wide variety of problems) the time step is rather restricted for reasons of accuracy.
Moreover, the Guermond and Quartapelle approach requires the computation of the convec-
tion matrix at each time step, which, at least in the three-dimensional case, is an expensive
procedure. Therefore we chose the scheme in (i)– (iii). The consistent mass matrix in step (iii)
can be exchanged with a lumped version as done by Gresho et al. [14,15], but even the
consistent matrix usually takes very few iterations to invert compared with the momentum and
pressure solvers.

Splitting 2:

(i) Convection sub-step: the same as in (i) of Splitting 1.

(ii) Incompressibility sub-step

�0u�
n+1+�1ũn+�2ũn−1= −�pn+1, � ·u�

n+1=0 (10)

(iii) Diffusion sub-step

�0un+1+�1ũn+�2ũn−1= −�pn+1+
1

Re
�2un+1

un+1=dn+1 (11)

Note that if we subtract the first equation of (10) from (11) we obtain

�0un+1−�0u�
n+1=

1
Re

�2un+1 (12)

In the case of a first-order scheme (�0=1/�t, �1= −1/�t, �2=0) and if the convection is
discretized by a Euler explicit scheme (or in the case of unsteady Stokes equations), this
formulation becomes equivalent to the first-order accurate version of the splitting scheme
proposed by Karniakakis et al. [16]. If we discretize the convection terms by means of a
higher-order Adams–Bashforth and the diffusion terms by means of a higher-order Adams–
Moulton scheme, this analogy can be extended to higher-order schemes as well. As mentioned
by those authors, it suffers from large splitting errors if a homogeneous Neumann condition
on pn+1 is imposed. Therefore they proposed to use an extrapolation for the pressure
boundary condition, which allows us to construct higher-order schemes.
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The derivation of Splitting 1 is discussed by Timmermans et al. [12] while the framework for
derivation of Splitting 2 is provided by Karniadakis et al. [16].

2.2. Equal-order approximation

So far, we have considered only the time discretization of the NSE leaving the choice of the
spatial approximation of the velocity and pressure open. It is well known that system (3) has
a unique solution for the velocity and pressure unknowns if the approximation spaces Vh for
the velocity and Ph for the pressure are LBB compliant, i.e.

��s�0, sup
v�Vh

L(v, q)
�v�Vh

��s�q�Ph
, �q�Ph (13)

It is also well known that if Vh�Ph, the pressure solution may suffer from spurious
oscillations. From a linear algebra point of view, the reason for these oscillations is the fact
that the null space of the Schur complement is non-trivial. Since both Splitting 1 and Splitting
2 solve a Poisson equation for the pressure rather than inverting the Schur complement, one
may think that these formulations avoid the LBB constraint. However, as correctly noticed by
Guermond and Quartapelle [11], this is not true. Their numerical simulations of a driven cavity
using a P1−P1 approximation clearly show that the pressure contains spurious modes. They
also essentially used the LBB constraint in the analysis of the error of their version of Splitting
1. However, it is not quite clear why the pressure is sometimes unstable if the LBB condition
is not satisfied. A possible explanation is the following. Let us consider the unsteady Stokes
equations and write the fully discrete system derived from Guermond and Quartapelle’s
version of Splitting 1 as

�
�0M+

1
Re

S
�

uh,*
n+1= − (�1Muh

n+�2Muh
n−1)+LT(�0ph

n+�1ph
n−1+�2ph

n−1) (14)

Sp(ph
n+1−ph

n)= −�0Luh,*
n+1 (15)

with M and S being the mass and stiffness matrices for the velocity and Sp being the pressure
stiffness matrix (with homogeneous Neumann boundary condition). The substitution of uh,*

n+1

from Equations (14) into (15) gives

Sp(ph
n+1−ph

n)= −�0LA−1[LT(�0ph
n+�1ph

n−1+�2ph
n−2)− (�1Muh

n+�2Muh
n−1)] (16)

where A=�0M+1/ReS. It is quite clear that this is just the first step of a preconditioned
iteration for solving a system of type Equation (4), which follows from the unsteady Stokes
equations. The initial guess is �0ph

n+�1ph
n−1+�2ph

n−2, the preconditioning matrix is Sp and the
relaxation parameter is given by �0. It is also clear that if a steady state is achieved, then the
time stepping becomes a preconditioned iterative procedure for inverting the Schur comple-
ment matrix, which follows from the steady Stokes equations, i.e. in such a case we attempt to
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solve the uncoupled (steady) system (3) using an iterative procedure (Uzawa iteration).
Subsequently, the LBB condition should be satisfied by the velocity–pressure approximation
in order to guarantee the pressure stability. Splitting 2 can be identified to be the first step of
the same iterative process starting with a zero initial guess for the pressure. In the steady limit
(for a Stokes flow) it will produce a constant pressure unless a more accurate than the
homogeneous Neumann boundary condition for the pressure is used. The accuracy issues of
this scheme are studied thoroughly by Orszag et al. [20].

We shall now try to shed some light on the prospects for stabilization of the incremental
Splitting 1, taking into account the discussion above. Let us perform step (i) of both splitting
algorithms above and discretize the NSE in time using a backward difference scheme to
produce the following generalized Stokes problem (all the subsequent considerations are valid
if a body force is included in the equations; we omit this term for the sake of simplicity):

�0un+1+�1ũn+�2ũn−1= −�pn+1+
1

Re
�2un+1

un+1=dn+1

� ·un+1=0 (17)

Its Galerkin formulation reads
Find

un+1� (H1(�))3 and pn+1�L0
2(�)=

�
q�L2(�):

�
�

q d�=0
�

such that

(u�
n+1, v)+

1
Re

(�un+1, �v)− (pn+1, � ·v)=0, �v� (H0
1(�))3

(� ·un+1, q)=0, �q�L0
2(�)

un+1=dn+1 on �� (18)

where u�
n+1=�0un+1+�1ũn+�2ũn−1.

A classical way to stabilize the system is to add to the second equation of (18) the residual
of the momentum equation in (17) multiplied by �q (more about this regularization approach
can be found in Franca et al. [21] and Axelsson et al. [22]), weighted by a small positive
parameter �. Then the stabilized formulation reads

Find

un+1� (H1(�))3 and pn+1�L0
2(�)�H1(�)
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such that

(u�
n+1, v)+

1
Re

(�un+1, �v)− (pn+1, � ·v)=0, �v� (H0
1(�))3

(� ·un+1, q)+�
�

(u�
n+1, �q)−

1
Re

(�2un+1, �q)+ (�pn+1, �q)
n

=0, �q�H1(�)�L0
2(�)

un+1=dn+1 on �� (19)

This formulation is clearly consistent with Equation (18) since the residual added to the
incompressibility constraint turns to zero for the exact solution of the generalized Stokes
problem. After integration by parts of the acceleration term (u�

n+1, �q), Equation (19) becomes

(�pn+1, �q)= −
�1

�
−�0

�
(� ·un+1, q)+ (� ·(�1ũn+�2ũn−1), q)−

�
��

u�
n+1 ·nq ds

+
1

Re
(�2un+1, �q) (20)

where n is the unit outward normal to ��. For �=1/�0, Equation (20) is very similar to the
Galerkin formulation of the pressure equation, which follows from sub-step (ii) of Splitting 2
provided that a proper Neumann boundary condition for the pressure is used. Indeed, the last
term in Equation (20) can be integrated by parts and then, applying the incompressibility

(�pn+1, �q)= (� ·(�1ũn+�2ũn−1), q)−
1

Re
(� ·�2un+1, q)−

�
��

u�
n+1 ·nq ds

+
1

Re
�

��
�2un+1 ·nq ds (21)

The surface integrals are exactly the contribution of the Neumann pressure boundary condi-
tion that follows from sub-step (iii) of Splitting 2. The difference comes from the term
1/Re(� ·�2un+1, q). However, as discussed by Axelsson et al. [22], this term is usually very
small (especially at large Reynolds numbers). Thus, Splitting 2 supplied with a proper pressure
boundary condition is expected to be stable if an equal-order approximation is used.2

Unfortunately, this formulation is unusable since it couples the velocity and pressure at time
level n+1. This difficulty can be circumvented in two ways. The first one is to use a high-order

2 A similar conclusion can be drawn for all the non-incremental schemes, including the one proposed by Chorin and
Temam. Of course, the issue of ‘proper pressure boundary conditions’ is quite non-trivial. The numerical experiments
with homogeneous Neumann pressure boundary conditions and a non-incremental scheme with a P2−P2 approxima-
tion did indeed yield non-oscillating pressure results in the case of a backward-facing step flow. However, the
divergence of the steady velocity field was a few orders of magnitude higher than the one computed with a proper
P2−P1 approximation. For the same flow, the incremental projection scheme needed a stabilization (see Section 4).
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extrapolation to the pressure boundary condition, as suggested by Karniadakis et al. [16]. The
second one is to perform the defect-correction iteration suggested by Axelsson et al. [22]. In
both cases, however, one needs to compute an approximation to the last term in Equation (21),
which is not a trivial matter in case of the usual C0 finite element interpolation and complex
geometries. As it will be shown in Section 4, at large Reynolds numbers this term can be
neglected and one can obtain reasonably accurate results. However, a more suitable (globally)
stable formulation can be obtained following the idea of Splitting 1. As already mentioned, it
can be considered as the first step of a preconditioned iteration for solution of the pressure
equation

LA−1LTph=LA−1(�1Mũh
n+�2Mũh

n−1) (22)

The spatial discretization of the first equations of (19) and (20) using an equal-order
approximation yields

Auh
n+1=LTph

n+1− (�1Mũh
n+�2Mũh

n−1) (23)

�̂Spph
n+1+Luh

n+1= �̂L(�1ũh
n+�2ũh

n−1)− �̂fs+ �̂D(uh
n+1) (24)

where �̂= (1/�−�0)−1, fs is the contribution of the first surface integral in Equation (20)
(known from the boundary conditions) and D(uh

n+1) is some kind of approximation of the last
term appearing in Equation (20). Since, as already mentioned, such an approximation is quite
awkward to compute if a C0 approximation is used, we neglect it in our further considerations,
thus introducing an additional splitting error, which is controlled by the small parameter �̂.
Substituting un+1 from Equation (23) into Equation (24) yields the following equation for the
pressure:

[�̂Sp+LA−1LT]ph
n+1= �̂L(�1ũh

n+�2ũh
n−1)+LA−1M(�1ũh

n+�2ũh
n−1)− �̂fs (25)

It is quite similar to Equation (22) except for the terms multiplied by the small parameter �̂.
Now, following the idea that the incremental Splitting 1 is actually a first step of a Richardson
iteration for solving Equation (22) with a preconditioner given by Sp we can formulate the
projection step of the stabilized formulation as the first step of an iteration for solving
Equation (25) with a correspondingly adjusted preconditioner given by (1+ �̂/�0)Sp. The
Galerkin formulation of the PPE then reads

(�[(1+ �̂̂)pn+1−pn], �q)= −�0(� ·u�
n+1, q)+ �̂̂(� ·(�1ũn+�2ũn−1), q)− �̂̂

�
��

u�
n+1 ·nq ds

(26)

where �̂̂= �̂�0. The overall stabilized incremental projection scheme with the projection step
written as a Poisson problem (and in case of the NSE) reads
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Stabilized Incremental Projection

(i) Convection sub-step: the same as in (i) of Splitting 1.
(ii) Diffusion sub-step: the same as in (ii) of Splitting 1.

(iii) Incompressibility sub-step:
� Solve Equation (26) for pn+1.
� Update the velocity according to

�0(un+1−u�
n+1)+�(pn+1−pn)=0

n ·u���
n+1=n ·dn+1 (27)

Remark 1
Note that Equation (26) is a linear combination of the PPE’s (more precisely their Galerkin
formulations), which follow from the incompressibility sub-steps of Splitting 1, Splitting 2,
Equations (6) and (10), with coefficients 1 and �̂̂. One can do the same while updating the
velocity and instead of Equation (27) use the linear combination of Equations (27) and (11) for
this purpose

�0(1+ �̂̂)un+1+ �̂̂(�1ũn+�2ũn−1)= −�[(1+ �̂̂)pn+1−pn]+
�̂̂

Re
�2un+1+�0u�

n+1

un+1=dn+1

The numerical experiments show that, in the case of low Reynolds numbers, this gives better
results for the final velocity. However, it precludes the possibility to do the Guermond and
Quartapelle’s trick and eliminate the velocity correction step, as discussed earlier (see Equation
(8)). We do not consider this scheme further.

Remark 2
The projection step can be further improved if instead of the ‘preconditioner’ used in Equation
(26), − (1+ �̂̂)�2, one follows the idea of Cahoet and Chabard [23] and use as a ‘precondi-
tioner’ the (continuous) operator defined by its inverse: �0(1+ �̂̂)−1[1/Re−�0(�2)−1]. This is
equivalent to using a slightly compressible form of the continuity equation and leads to better
results at low Reynolds numbers. However, it does not change the theoretical order of
accuracy of the scheme and to make our analysis easier we do not consider it in the next
sections. The expenses for such an approach are practically the same as for solving Equation
(26) and therefore it should not be disregarded. Actually, it can be applied to the original
(non-stabilized) incremental scheme Splitting 1 with an LBB-compliant approximation, since it
improves its result too at the same expenses.3

3 Our numerical experiments using a problem with an exact solution showed decreases in the error at low Reynolds
numbers but the convergence rate of the scheme was still second.
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3. CHOICE OF THE STABILIZATION PARAMETER

3.1. Normal modes analysis

A question that still remains open is how to choose �̂̂ so that to retain the second-order
temporal accuracy of the incremental projection scheme. In order to address this issue we
consider the simplified one-dimensional flow model suggested by Orszag et al. [20] and used by
E and Liu [6] in their analysis of several projection schemes. Fourier transform of the
two-dimensional Stokes equations in one of the spatial directions (supposing periodic
boundary conditions in this direction) yields the following set of one-dimensional boundary
value problems:

�u
�t

+�kp=�k
2u

�ku=0

u(�1, t)=0 (28)

where k is the wave number of the Fourier transform and the differential operators subscripted
by k are defined as

�k
2u=

��2u
�x2−k2�, �kp=

��p/�x
ikp

n
, �k ·u=

�u
�x

+ ik� (29)

with u and � being the components of u.
The Stabilized Incremental Projection as formulated above is difficult for a normal modes

analysis and therefore we consider the Darcy form of a slightly different scheme

�0u�
n+1+�1ũn+�2ũn−1= −�pn+

1
Re

�2u�
n+1, u�

n+1=dn+1

u�
n+1−un+1=

1
�0

�[(1+ �̂̂)pn+1−pn], � ·un+1=0

un+1 ·n���=dn+1 ·n (30)

Note that in the case of a Stokes flow, it yields the same PPE as in the Stabilized Incremental
Projection. The velocity-correction step is different; however, this will not affect the main result
of the normal mode analysis that follows. Orszag et al. [20] derived a normal mode solution
of Equation (28) of the form
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(u, p)(x, t)=e�t(û, p̂)(x) (31)

with (û, p̂) given by

û=cos(�x)−cos(�)
cosh(kx)
cosh(k)

�̂=
�

ik
sin(�x)+

1
i

cos(�)
sinh(kx)
cosh(k)

p̂(x)=
�

k
cos(�)

sinh(kx)
cosh(k)

(32)

in the symmetric case and by

û=sin(�x)−sin(�)
sinh(kx)
sinh(k)

�̂= −
�

ik
cos(�x)+

1
i

sin(�)
cosh(kx)
sinh(k)

p̂(x)=
�

k
sin(�)

cosh(kx)
sinh(k)

(33)

in the anti-symmetric case. The dispersion relation is specified by

�� tan(�)+k tanh(k)=0 in the symmetric case
� cot(�)−k coth(k)=0 in the anti-symmetric case

(34)

and

�= −k2−�2 (35)

Scheme (30) applied to Equation (28) becomes4

�0u�
n+1+�1un+�2un−1= −�kpn+�k

2u�
n+1, u�

n+1(�1, t)=0

u�
n+1−un+1=

1
�0

�k [(1+ �̂̂)pn+1−pn], un+1 ·n(�1, t)=0

�k ·un+1=0

4 From now on we consider only the second-order version.
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The semi-discrete normal modes then read

(un, pn)= l n(ū, p̄), u�
n+1= l n+1ū* (36)

The set of equations can be integrated exactly and the solution (in the symmetric case) is given
by

ū=cos(�̄x)−cos(�̄)
cosh(kx)
cosh(k)

�̄=
�̄

ik
sin(�̄x)+

1
i

cos(�̄)
sinh(kx)
cosh(k)

ū*=cos(�̄x)−cos(�̄)
cosh(kx)
cosh(k)

−
�

�0

�� cos(�̄)
�cos(�x)

cos(�)
−

cosh(kx)
cosh(k)

�
�̄*=

�̄

ik
sin(�̄x)+

1
i

cos(�̄)
sinh(kx)
cosh(k)

− ik
�

�0

�� cos(�̄)
�1

�

sin(�x)
cos(�)

−
1
k

sinh(kx)
cosh(k)

�
p̄(x)=�(1+�� ) cos(�̄)

�1
k

sinh(kx)
cosh(k)

−
1
�

sin(�x)
cos(�)

�
(37)

with

�� = (1+ �̂̂)(2+	1+2��t)−3+2��t

(1+ �̂̂)(2+	1+2��t)
(38)

The dispersion relation is given by

�2= −�0�� −1−k2, �= −k2− �̄2

�̄ tan(�̄)−k tanh(k)=
�k��
�0

�
tanh(k)−

k
�

tan(�)
�

(39)

The expressions for the anti-symmetric modes can be derived similarly to be

ū=sin(�̄x)−sin(�̄)
sinh(kx)
sinh(k)

�̄=
�̄

ik
cos(�̄x)+

1
i

sin(�̄)
cosh(kx)
sinh(k)

ū*=sin(�̄x)−sin(�̄)
sinh(kx)
sinh(k)

−
�

�0

�� sin(�̄)
�sin(�x)

sin(�)
−

sinh(kx)
sinh(k)

�
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�̄*=
�̄

ik
cos(�̄x)+

1
i

sin(�̄)
cosh(kx)
sinh(k)

−
�

�0

�� sin(�̄)
�1

�

cos(�x)
sin(�)

−
1
k

cosh(kx)
sinh(k)

�
p̄(x)=�(1+�� ) sin(�̄)

�1
k

cosh(kx)
sinh(k)

−
1
�

cos(�x)
sin(�)

�
(40)

With the dispersion relation given by

�2= −�0�� −1−k2, �= −k2− �̄2

�̄ cot(�̄)−k coth(k)=
�k��
�0

�
coth(k)−

k
�

coth(�)
�

(41)

From Equation (38) it is quite clear now that if �̂̂ is chosen to be O(�t), �� will be of the
order of �t and therefore the stabilized incremental scheme (in a Darcy form) will retain the
second-order accuracy for the velocity of the original incremental scheme Splitting 1. It is also
clear that the additional term in Equation (30) (compared with Equation (27)) is of the order
of (�t)2 and therefore the present analysis as applicable to the original Stabilized Incremental
Projection. Equations (39) and (41) show that the pressure will contain oscillations with
magnitude and wavelength of order �t.

We should emphasis here that this gives only the upper bound for the stabilization
parameter. However, as discussed by Wathen and Silvester [24] in the case of stabilized
Uzawa-like iteration, it cannot be chosen arbitrarily small. If �̂̂ is below a certain value (which
depends on the specific problem under consideration), the spurious pressure modes can
reappear in the numerical solution. An estimate from below is discussed in the next subsection.

3.2. A stability bound for �̂̂

Let us first introduce the following constants:

�2(C)=min
p�P�

pTCp
pTMpp

(42)

�2(C)=min
p�P�

pTCp
pTMpp

(43)

where Mp is the standard pressure mass matrix, C is an arbitrary symmetric matrix of size M,
P� is RM equipped with the norm induced by the pressure mass matrix and M is the number
of the pressure degrees of freedom. Generally M is much greater than the number of velocity
degrees of freedom N although the order of approximation for velocity and pressure is the
same. Fortin and Pierre [25] have derived the following upper estimate for �(LA−1LT) in the
case of the generalized Stokes equations:

�2(LA−1LT)�n
�2(S)

�0+	�2(S)
(44)
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where n is the dimensionality of the physical space and 	=1/Re (note that S is the discrete
Laplacian on the velocity space). Then

�2(LA−1LT+ �̂Sp)�n
�2(S)

�0+	�2(S)
+ �̂�2(Sp)�n

�2(Sp)
�0+	�2(Sp)

+ �̂�2(Sp) (45)

A well-known inverse estimate is available for �(Sp) provided that the grid is uniform
(non-isoparametric), with an element size h (see, for example, Axelsson and Barker [26], pp.
235–238)

�2(Sp)�
c

h2 (46)

c being independent of h.
An estimate from below for �2(LA−1LT+ �̂Sp) is more difficult to obtain. Note that this

would be a generalization of the LBB condition for the stabilized system. Maitre and Wabo
[27] have derived such an estimate using the relation between the globally stabilized discretiza-
tions and the mini-element method, which uses locally introduced bubble functions for
achieving stability. In our notations, their result (5.1) reads

�2(LA−1LT+ �̂Sp)�min(1, m(�̂))� s
2 (47)

where �s is a stability constant of the LBB-stable mini-element and

m(�̂)=min
k

�̂ �k ��bk �1,k
2��

k

bk
�2 (48)

Here k is an arbitrary element and �k � is its measure.
Elementary considerations on a uniform (non-isoparametric) grid of size h show that

m(�̂)=
d�̂

h2 (49)

with the constant d being independent of h. Now, combining Equations (45), (46), (47) and
(49) we can see that, for uniform grids, choosing �̂ to be of the order of h2 will insure the
stability of the stabilized system. Moreover, this choice makes the condition number of the
stabilized Schur complement independent of the grid parameter h. Since �̂̂= �̂�0, this choice
for �̂ gives

�̂̂=O
�h2

�t
�

(50)
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In the previous subsection we showed that accuracy considerations imply that �̂̂=O(�t). In
practice, we usually choose �t to be of the order of h and therefore these two estimates do not
contradict to each other. Note that the stability restriction on the time step, induced by the
method of characteristics, is given by �t�c�th

n/6.
It is quite difficult to evaluate the constants c and d in the general case. In the particular

case, when the grid is constructed of cubes of size h sub-divided into five tetrahedra (see Figure
1) and in the case of P1−P1 approximation, these constants are c=320 and d=280. If a
higher-order polynomial approximation is used, the computation of d is quite complicated but
the order of the stability constant in terms of h remains the same.

4. NUMERICAL RESULTS

In the present study we used mostly a P2−P2 tetrahedral approximation. The reason was that
in some cases (backward-facing step flow, for instance) the results with P1−P1 approximation
were quite inaccurate. The spatial integration was performed by means of a seventh-order
Gaussian integration over a tetrahedron. The meshes that we used were produced by first
splitting the numerical domain into cubes and then splitting each cube into five tetrahedra (see
Figure 1). In all numerical experiments discussed in this chapter we performed the convection
sub-step of any of the splitting schemes by means of the method of characteristics.

First we would like to discuss some results obtained with the usual incremental projection
scheme Splitting 1 for the driven cavity problem. The two-dimensional results of Guermond
and Quartapelle [11], who used a P1−P1 approximation (and a slightly different incremental
projection, as discussed above), show that the pressure field at Re=100 for �t=0.1 suffers of
severe spurious oscillations. Our three-dimensional simulations in a cube, using both P1−P1

Figure 1. Sub-division of a cube into tetrahedra. The five tetrahedra are given by A1A2A3A6, A1A6A8A5,
A1A3A8A4, A6A3A8A7 and A1A3A8A6.
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and P2−P2 approximations, produced a very reasonable, non-oscillatory result for the
pressure field. In Figure 2 it is compared with the results obtained using an LBB-stable P2−P1

tetrahedral approximation and of an iterative preconditioned Uzawa iteration technique for
the generalized Stokes problem. In all the cases the convection step was performed by means
of a characteristic method and the mesh contained 60921 nodes. This stable result seems to be
due to the additional side wall boundary conditions in the three-dimensional cavity case.

However, the results with Splitting 1 and both P2−P2 and P1−P1 approximations for the
other benchmark problem, the backward-facing step flow suffered of severe node-to-node
pressure oscillations, typical for the LBB-unstable discretizations (see Figure 3). Therefore, in
the following we present mainly results with the Stabilized Incremental Projection. It is not
surprising that the stability of the pressure calculations depends on the type of the problem

Figure 2. Steady state pressure contour lines for the flow in a driven cavity; �t=0.1, Re=100. Results
with Splitting 1 and (a) LBB-stable P2−P1 approximation; (b) P2−P2 approximation. (c) shows the
result with a preconditioned Uzawa iteration for the generalized Stokes problem and P2−P1 approxima-

tion.

Figure 3. Pressure contour lines for the flow behind a backward-facing step; Re=200, �t=0.1, P2−P2

approximation with Splitting 1.
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under considerations and that one can obtain reasonable (non-oscillatory) results with theoret-
ically unstable elements (see for a discussion Brezzi and Fortin [29], p. 78).

The temporal convergence rate of the Stabilized Incremental Projection is first tested on the
analytical solution used by Minev and Ethier [18]. The mesh in �= [−0.5, 0.5]3 contained
4401 nodes and 2560 elements. The stabilization parameter was set to �̂̂=�t. The L2 norm of
the error for the velocity at different Reynolds numbers, measured at a fixed time t=0.8, is
presented in Table I. The increase of the error at Re=100 and a very small time step is due
to the influence of the characteristic scheme for the convection integration, which is known to
exhibit such a behaviour (see Minev and Ethier [18]). Otherwise, the results for the velocity
show a convergence rate very close to 2. The error in the pressure is presented in Table II. We
should note here that no spurious oscillations are observed in the pressure results, although the
time step, respectively �̂̂, is quite small in some of the experiments presented in Table II.

The Stabilized Incremental Projection is also benchmarked on the three-dimensional driven
cavity problem. The parameters of the flow and mesh that were used are given above. The
result for the profile of the horizontal velocity at the centreline of the cavity is compared with
the numerical result of Iwatsu et al. [28] in Figure 4. In the same figure we also show the result
of Splitting 2 combined with a P2−P2 approximation and homogeneous Neumann boundary
conditions for the pressure. As already discussed, this scheme can suffer from large splitting
errors, but since it is proportional to 1/Re, we can expect that at large Reynolds numbers the
result should be quite reasonable. Indeed, at Re=100 all the results are quite close to each
other, the maximum difference being less than 2 per cent. The pressure fields in both cases do
not suffer spurious oscillations.

Finally, we present results for the flow behind a backward-facing step. As mentioned above,
we obtained oscillatory pressure with Splitting 1. Although we solved the flow in three
dimensions we imposed symmetry conditions in one of them so that the resulting flow mimics

Table I. L2 norm of the velocity error at t=0.8 for different time steps, �t,
and different Reynolds numbers.

�t Re=1 Re=100

0.1 0.006 0.0043
0.000870.05 0.0016

0.00042 0.000220.025
0.000240.0125 0.00012

Table II. L2 norm of the pressure error at t=0.8 for different time steps, �t,
and different Reynolds numbers.

Re=100Re=1�t

0.35 0.0860.1
0.05 0.1 0.016

0.00420.0390.025
0.0125 0.033 0.014
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Figure 4. Steady state horizontal velocity profiles along the centreline of the cavity (x=0, y=0,
−0.5�z�0.5) for lid-driven cavity flow at Re=100. Solid line, results Iwatsu et al. [28]; results marked
with *, Stabilized Incremental Projection ; results marked with x, Splitting 2 with P2−P2 approximation

and homogeneous Neumann condition for the pressure.

a two-dimensional one (at least for small Reynolds numbers). This enabled us to compare our
results with several available experimental and numerical results for two-dimensional flow
behind a step. The precise setting of the problem was the same as the one described by Minev
and Ethier [18]. Initially we used a grid containing 22525 and 11800 tetrahedral elements in a
30-step heights long channel. The nodal spacing in the streamwise direction was 0.1 for the
first ten step heights and then gradually increased to 0.2. In the other two directions the nodal
spacing was 0.1. The problem was solved at Re=100 and Re=200 (the Reynolds number is
based the height of the outlet), using time step �t=0.2 and �t=0.1 correspondingly. The
Stabilized Incremental Projection with P2−P2 tetrahedral approximation produced a non-
oscillatory pressure field as can be seen in Figure 5, which presents the steady state pressure
contour lines. For reference we also provide the contour lines obtained using the same
characteristic integration of the convective terms but solving the generalized Stokes problem by
means of a preconditioned Uzawa iteration technique (see Cahoet and Chabard [23]) and the
result of Splitting 1 with LBB-compliant P2−P1 tetrahedra.

One of the most representative parameters of this flow is the length of the recirculation zone
that is formed behind the step. The result obtained with the Stabilized Incremental Projection
and P2−P2 tetrahedra are compared with the result with Splitting 1 with P2−P1 tetrahedra
and other available numerical and experimental data in Table III. The first two results are
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Figure 5. Steady state pressure contour lines for the flow behind a backward-facing step; �t=0.1,
Re=200. (a) shows results with Stabilized Incremental Projection ; (b) Splitting 1 and LBB-stable P2−P1

approximation; (c) result with a preconditioned Uzawa iteration for the generalized Stokes problem.

Table III. Comparison of the dimensionless length of the recirculation zone for
flow over backward-facing step, using the Stabilized Incremental Projection (SIP)
and P2−P2 tetrahedra, with the results of Splitting 1 with P2−P1 tetrahedra

(S1), Timmermans et al. [12] (T) and Armaly et al. [31] (A).

Numerical ExperimentalRe

SIP (3-D code) S1 (3-D code) T (2-D code) A

3.16 3.23 3.2100 3.2
200 5.26 5.29 5.4 –

quite similar and the slight underprediction of the recirculation length is due to insufficient
spatial resolution rather than influence of the splitting error (Timmermans et al. use a
high-order spectral element technique and a high-resolution grid in two dimensions).

The two-dimensional flow behind a step was very well documented by Gartling [30]. As it
was noticed by this author, for Re�400, the three-dimensionality of the flow becomes
significant and the comparison of two-dimensional simulations with experimental data is
unsatisfactory. In our case, although we imposed symmetry conditions on the front and back
faces of the channel, we could not preclude the appearance of transversal waves. Therefore, we
could not expect to obtain a very good comparison with two-dimensional results for Re�400.
We resolved the flow at Re=800 using a variety of meshes and channel lengths. On the mesh
of 22525 elements (the channel length was 30 step heights) the length of the recirculation zone
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of the lower wall eddy of the steady flow was about 11.4. Then, we used a uniform (and finer)
grid of 112685 nodes and 60800 elements, the nodal spacing in streamwise and vertical
direction being 0.05 and in transversal direction −0.1. On this grid we obtained a recirculation
length of about 11.4 as well. The increase of the channel length to 40 step heights, keeping the
same nodal spacing, did not significantly change the recirculation length and it was about 11.6.
This is almost twice the two-dimensional value obtained by Gartling: 6.1. As could be
expected, the value that we obtained is much closer to the experimental measurements of
Armaly et al. [31]—about 14. In general, the precise resolution of this flow in three dimensions
requires very expensive computations and it is beyond the scope of the present paper. More
precisely, there are different three-dimensional flows of this type depending on the boundary
conditions in the transversal direction. But it is quite clear from our results that they show the
right trend of increase of the recirculation length.

5. CONCLUSIONS

The projection/splitting methods for the generalized Stokes problem can be considered as a
first iteration of a preconditioned iterative procedure for inverting the Uzawa matrix with a
particular initial guess and preconditioner. This helped us to derive a stabilized projection/
splitting scheme from the classical globally stabilized Stokes system. It was then shown that the
high-order splitting scheme proposed by Karniadakis et al. [16] can be considered as a
particular case of this stabilized system for a specific choice of the stabilization parameter.
Therefore it should yield stable pressure results (as confirmed by numerical experiments not
presented here).5 Unfortunately, the implementation of higher-order pressure boundary condi-
tions is a relatively complicated procedure. Therefore we concentrated further on a globally
stabilized incremental projection scheme. Using normal mode analysis and a simplified
two-dimensional model flow we showed that if the stabilization parameter �̂̂ is of order of �t,
then the stabilized scheme retains the second-order accuracy of the original incremental
projection scheme. We also showed that the pressure stability is insured if �̂̂�d�h2/�t. The
theoretical order of accuracy of the scheme was verified numerically on a problem with an
analytical solution and two benchmark problems. Our results are in a good agreement with
other available numerical and experimental data. Moreover, the pressure does not contain
spurious pressure oscillations. This was shown even for problems for which the non-stabilized
scheme yielded node-to-node oscillations in the pressure field.
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